/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices
Docker Security

Henrik Baerbak Christensen

eV Introduction

AARHUS UNIVERSITET

e Sources:
— Newman §9
« Some aspects has already been covered
— Snyk.io / Vermeer
« A few aspects have been covered

— Docker secrets
* Find it on Docker website

CS@AU Henrik Baerbak Christensen 2

Y Security in Transit

AARHUS UNIVERSITET

e Security In transit
— Use TLS to ensure encrypted (at least outwards) traffic

— Use Authentication and Authorization
* Like OAuth 2.0

— Deputy problem is relevant in a MicroService context:
* Cmd calls Daemon calls CaveService
— But cmd is only authorized against Daemon?
— Solution: OAuth 2.0 provides the /introspect feature
« Daemon hands bearer token to CaveService

« CaveService can then /introspect validity on the AuthServer
— And thus establish trust without trusting Daemon

Y Security at Rest

AARHUS UNIVERSITET
* Encrypt the databases...

— For Redis, it seems it relies on encrypted file systems !
 |.e. no direct support by the Redis DB itself
— As far as | can dig out of the documentation
— Do not invent encryption algorithms yourself ©
» Use existing tools and algorithms
« Use BitLocker, etc.

— For passwords, store them using salted password hashing

- Actually the jCrypt (BCrypt implementation) is used even in the Stub
subscription servire

public SubscriptionPair(String password, SubscriptionRecord record) {
String salt = BCrypt.gensolt(log_rounds: 4);
String hash = BCrypt.hoshpw(password, salt);

this.bCryptHash = hash;

CS@AU this.svbscriptionRecord = record;
1

/v Defense in Depth

AARHUS UNIVERSITET

 Firewalls

— Only allow network traffic on proper ports
* i.e. no “ports 6379” on your Redis in the swarm

 |tis already accessible from with the swarm but now you expose it to
the outside!

— Beware of issuing ‘docker run —p 6379:6379..." on a production
machine

» Docker will open the port using IPTABLES and ‘ufw’ does not see it!

/v Defense in Depth

AARHUS UNIVERSITET
* Logging

— Proper logging allows detecting and recovering from attacks

— Do not store sensitive information in logs
» As the skycave daemon does at the moment!

 Intrusion Detection Systems

— IPS can help out
* | have no personal experience ®

/v Defense in Depth

AARHUS UNIVERSITET

« Network Segregation
— Separate nodes onto separate networks
— l.e. a ‘frontend-network’ for the API Gateway
— And a ‘backend-network’ for the internal services + databases

e Swarm is excellent at this
— You can attach a service on multiple networks
« API gateway on both frontend and backend
« DigitalOcean et al.

— Provides ‘private network’

* Use that network for Cluster communication, not the official IP
address

/v

AARHUS UNIVERSITET
* Principle of least privilege (Source: Wikipedia)

Not mentioned?

In information security, computer science, and other fields, the principle of least privilege (PoLP), also
known as the principle of minimal privilege or the principle of least authority, requires that in a
particular abstraction layer of a computing environment, every module (such as a process, a user, or a

program, depending on the subject) must be able to access only the information and resources that are
necessary for its legitimate purpose [

* |n Linux
— Control your ‘umask’

— Ensure only you can read/write sensitive files

— Don’t be the
root user

_ EtC i I de Nov 17 2017 id rsa
’ =TW=-TW=-T== _ - de Sep 26) id_rsa.pub
-Tw-r--r-- 1 csdev csdev 5532 Oct 25 12:53 known_hosts

CS@AU Henrik Baerbak Christensen 8

/v Key Management

AARHUS UNIVERSITET

« Docker Swarm has excellent secure key management
— Usernames and passwords
— TLS certificates and keys
— Database passwords, etc

 Only works in stacks — not in standalone containers

 |dea

— docker secret create thesecret hostfile
« Will
— Encrypt local ‘hostfile’
— Send it to all nodes in swarm using TLS
— Make file available in /run/secrets/thesecret

— Passwords are a bit weird, as secrets are files...

/v Docker Secret

AARHUS UNIVERSITET

« Snippet from Subscription Service's compose file

environment:
- KEYSTORE FILE=/run/secrets/cavereg.jks
- KEYSTORE PASSWORD FILE=/run/secrets/keystorePassword

networks:
- network-subscription

secrets:
- cavereqg.jks
- keystorePassword

echo "changeit" | dock
docker secret create c

— 1.e. you have to fiddle with the server to set the passwords
« Fair enough, but well manual process

CS@AU Henrik Baerbak Christensen 10

/v Reading ‘passwords’

AARHUS UNIVERSITET

« As all secrets are files — what to do with a password?
— You have to fiddle with a ENTRYPOINT script

environment:
- KEYSTORE FILE=/run/secrets/cavereg.jks
- KEYSTORE PASSWORD FILE=/run/secrets/keystorePassword

networks:
- network-subscription

secrets:
- cavereqg.jks
- keystorePassword

if test - "SKEYSTORE_PASSWORD_FILE"; then
echo "Picking keystore password from a docker secret file"
0 the docker secret and set the env accordingly
xport KEYSTORE_PASSWORD=%(cat "$KEYSTORE_PASSWORD_FILE")

echo "Keystore password set from -e switch"

CS@AU Henrik Baerbak Christensen 11

/v Vulnerabilities

AARHUS UNIVERSITET
« All code can contain loopholes that attackers can use

g Tue CERT

« Writing secure (Java) code... CORACLE SECURE

— Is a major topic on its own

And way outside scope of course and
my area of expertise...

* Ensure you do not import other’s vulnerabilities
— l.e. ensuring your container is as secure as possible

CS@AU Henrik Baerbak Christensen 12

/v

AARHUS UNIVERSITET

* You can scan your image for vulnerabillities

csdevi@ml-dev:-

Tested 23

scan henrikbaerbak/jdkil1l-gradle6s

o |

2 dependencies for known issues, found 82 issues

Base Image Vulnerabilities Severity

ubuntu:bionic-20201119 40 ® critical, 1 high, 13 medium,

Recommendations for base image upgrade:

Minor upc
Base Image
ubuntu:18.

deor upqraré'

uhun tu: lmpl sh-28211815 12 @ critical, © high, 2 medium,

CS@AU

uulnerabilities Severity
p4 24 ® critical, © high, 3 medium, 21 low

Vulnerabilities Severity

Henrik Baerbak Christensen

10 low

Snyk.io

13

/v Vermeer (2021)

AARHUS UNIVERSITET

« Vermeer provide a set of practices to use in creating
Images, which lowers the amount of vulnerabillities.

| tried them and got © this...

csdev@ml-dev:~/proj/cave$ docker scan henrikbaerbak/private:cave-jar

Testing henrikbaerbak/private:cave-jar...

Organization: henrikbaerbak
] apk
C docker -image
ocker image: HN gL

Platform: linu
Base image: alf
Licenses: HiEE

+ Tested 18 dependencies for known issues, no vulnerable paths found.

According to our scan, you are currently using the most secure version of the selected base image

CS@AU Henrik Baerbak Christensen 14

4

AARHUS UNIVERSITET

« Source: 10 best practices to containerize Java
applications with Docker

CS@AU

1. Use deterministic docker base image tags

® Avoid FROM openjdk
® Avoid FROM maven:openjdk
® Avoid FROM maven:3-jdkill

Instead of generic image aliases, use SHA256 hashes or
specific image version tags for deterministic builds.
For example:

® FROM
maven:3.6.3-jdk-11-s1lim@sha256 :68celcd457891F

2. Install only what you need in production
You do not need a | DK, the Java code, and a build tool like
Maven or Gradle in your production image. Instead, use the
product of your Java build.

® Copythe Jar or War.

® UseaJava Runtime Environment (JRE).

3. Find and fix security vulnerabilities in your
Java Docker image

Docker base images may include security vulnerabilities in
the software toolchain they bundle, including the Java
Runtime Environment iself.

Scan and fix security vulnerabilities with the free

Snyk Container tool which also provides base

image recommendations:

® npm install -g snyk

® snyk auth

® snyk container test myimage
--file=Dockerfile

Advice in short form

4. Use multi-stage builds

Separate your building image from your production image.

® Build your artifacts in the build stage with all possible
tools and secrets you need.

® Copy theresulting artifact(s) to the most minimal
production image.

5. Don't run Java apps as root

Docker defaults to running the process in the container as
the roor user, which is a precarious security pracrice. Use a
low privileged user and proper filesystem permissions:

® Crearea new user.

® Give the user only necessary permissions.

® Calluser youruser.

6. Properly handle events to safely
terminate a Java application

Docker creates processes—such as PID +—and they must
inherently handle process signals to funcrion properly. This
is why you should avoid any of these variarions:

® CMD “java” “-jar™ “application.jar”

® CMD “start-app.sh”

Instead, use a lightweight init system, such as dumb-inic,
to properly initialize the Java process with signals supporc:
® CMD “dumb-init” “java® “-jar”

“application.jar”

7. Gracefully tear down Java applications

Avoid an abrupt termination of a running Java application
that halts live connections;. either use an application
server or create a shutdown hook. Try using a process
signal event handler:

Runtime.getRuntime() .addShutdownHook
(yourShutdownThread) ;

8. Use .dockerignore
Use .dockerignore roensure:

® nodebug log files appear in your container.

® nosecrets are accidentally leaking.

® asmall Docker base image without redundant and
unnecessary files.

9. Make sure Java is container-aware

Old VM versions don’t respect Docker memory and CPU
setmings. Make sure the JVM is container-aware.

® Usejavaito+
® UseJava 8 update 191+

10. Be careful with automatic Docker
container generation tools

Tools like Spring Boot 2.3 Docker image creation and JIB
are great tools to auromarically build Docker images.
However, you are not aware of all security concerns. So,
be careful when using these!

Instead, consider creating a specific Dockerfile
implementing all best pracrices.

15

Y Summary

AARHUS UNIVERSITET

* Lots of attack surfaces ®

— Lots of place in which you must do the right thing and adhere to
the right protocols and practices

CS@AU Henrik Baerbak Christensen

16

