
Microservices and DevOps

Scalable Microservices
Docker Security

Henrik Bærbak Christensen



Introduction

• Sources: 

– Newman §9

• Some aspects has already been covered

– Snyk.io / Vermeer

• A few aspects have been covered

– Docker secrets

• Find it on Docker website

CS@AU Henrik Bærbak Christensen 2



Security in Transit

• Security in transit

– Use TLS to ensure encrypted (at least outwards) traffic

– Use Authentication and Authorization

• Like OAuth 2.0

– Deputy problem is relevant in a MicroService context:

• Cmd calls Daemon calls CaveService

– But cmd is only authorized against Daemon?

– Solution: OAuth 2.0 provides the /introspect feature

• Daemon hands bearer token to CaveService

• CaveService can then /introspect validity on the AuthServer

– And thus establish trust without trusting Daemon

CS@AU Henrik Bærbak Christensen 3



Security at Rest

• Encrypt the databases…

– For Redis, it seems it relies on encrypted file systems !

• I.e. no direct support by the Redis DB itself

– As far as I can dig out of the documentation

– Do not invent encryption algorithms yourself ☺

• Use existing tools and algorithms

• Use BitLocker, etc.

– For passwords, store them using salted password hashing

• Actually the jCrypt (BCrypt implementation) is used even in the Stub 

subscription service 

CS@AU Henrik Bærbak Christensen 4



Defense in Depth

• Firewalls

– Only allow network traffic on proper ports

• i.e. no “ports 6379” on your Redis in the swarm

• It is already accessible from with the swarm but now you expose it to 

the outside!

– Beware of issuing ‘docker run –p 6379:6379…’ on a production 

machine

• Docker will open the port using IPTABLES and ‘ufw’ does not see it!

CS@AU Henrik Bærbak Christensen 5



Defense in Depth

• Logging

– Proper logging allows detecting and recovering from attacks

– Do not store sensitive information in logs

• As the skycave daemon does at the moment!

• Intrusion Detection Systems

– IPS can help out

• I have no personal experience 

CS@AU Henrik Bærbak Christensen 6



Defense in Depth

• Network Segregation

– Separate nodes onto separate networks

– I.e. a ‘frontend-network’ for the API Gateway

– And a ‘backend-network’ for the internal services + databases

• Swarm is excellent at this

– You can attach a service on multiple networks

• API gateway on both frontend and backend

• DigitalOcean et al.

– Provides ‘private network’

• Use that network for Cluster communication, not the official IP 

address

CS@AU Henrik Bærbak Christensen 7



Not mentioned?

• Principle of least privilege (Source: Wikipedia)

• In Linux

– Control your ‘umask’

– Ensure only you can read/write sensitive files

– Don’t be the

root user

– Etc.

CS@AU Henrik Bærbak Christensen 8



Key Management

• Docker Swarm has excellent secure key management

– Usernames and passwords

– TLS certificates and keys

– Database passwords, etc

• Only works in stacks – not in standalone containers

• Idea

– docker secret create thesecret hostfile

• Will

– Encrypt local ‘hostfile’

– Send it to all nodes in swarm using TLS

– Make file available in /run/secrets/thesecret

– Passwords are a bit weird, as secrets are files…
CS@AU Henrik Bærbak Christensen 9



Docker Secret

• Snippet from Subscription Service’s compose file

• And creating the secrets on the swarm manager

– i.e. you have to fiddle with the server to set the passwords

• Fair enough, but well manual process

CS@AU Henrik Bærbak Christensen 10



Reading ‘passwords’

• As all secrets are files – what to do with a password?

– You have to fiddle with a ENTRYPOINT script

CS@AU Henrik Bærbak Christensen 11



Vulnerabilities

• All code can contain loopholes that attackers can use

– Code vulnerabilities

• Writing secure (Java) code…

– Is a major topic on its own

And way outside scope of course and 

my area of expertise…

• Ensure you do not import other’s vulnerabilities

– I.e. ensuring your container is as secure as possible

CS@AU Henrik Bærbak Christensen 12



Snyk.io

• You can scan your image for vulnerabilities

• 

CS@AU Henrik Bærbak Christensen 13



Vermeer (2021)

• Vermeer provide a set of practices to use in creating 

images, which lowers the amount of vulnerabilities.

• I tried them and got ☺ this…

CS@AU Henrik Bærbak Christensen 14



Advice in short form

• Source: 10 best practices to containerize Java 

applications with Docker

CS@AU Henrik Bærbak Christensen 15



Summary

• Lots of attack surfaces 

– Lots of place in which you must do the right thing and adhere to 

the right protocols and practices

CS@AU Henrik Bærbak Christensen 16


